当前位置: > 游戏攻略 > 游戏攻略 > 正文

母上攻略游戏建模-染色质组装的结构模型有哪些呢?

来源:网络整理  发布者:admin  发布时间:2024-09-29 16:23:04
本篇文章给大家谈谈母上攻略游戏建模,以及染色质组装的结构模型有哪些呢?对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享母上攻略游戏建模的知识,其中也会

本篇文章给大家谈谈母上攻略游戏建模,以及染色质组装的结构模型有哪些呢?对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享母上攻略游戏建模的知识,其中也会对染色质组装的结构模型有哪些呢?进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

  1. 染色质组装的结构模型有哪些呢?

1、染色质组装的结构模型有哪些呢?

1、用温和的方法裂解细胞核,将染色质铺展在电镜铜网上,通过电镜观察,未经处理的染色质自然结构为30nm的纤丝,经盐溶液处理后解聚的染色质呈现一系列核小体彼此连接的串珠状结构,串珠的直径为10nm。

2、用非特异性微球菌核酸酶消化染色质时,经过蔗糖梯度离心及琼脂糖凝胶电泳分析,发现绝大多数DNA被降解成大约 200 bp的片段;如果部分酶解,则得到的片段是以 200 bp为单位的单体、二体、三体等。

蔗糖梯度离心得到的不同组分,在波长 260 nm的吸收峰的大小和电镜下所见到的单体、二体和三体的核小体组成完全一致。

如果用同样方法处理裸露的DNA,则产生随机大小的片段群体。

从而提示染色体DNA除某些周期性位点之外均受到某种结构的保护,避免酶的接近。

3、应用X射线衍射、中子散射和电镜三维重建技术,研究染色质结晶颗粒,发现核小体颗粒是直径为 11 nm、高 6.0 nm的扁圆柱体,具有二分对称性。

核心组蛋白的构成是先形成(H3)2-(H4)2四聚体,然后再与两个H2A-H2B异二聚体结合形成八聚体。

4、SV40微小染色体分析。用SV40病毒感染细胞,病毒DNA进入细胞后,与宿主的组蛋白结合,形成串珠状微小染色体,电镜观察SV40 DNA为环状,周长1 500 nm,约 5.0 kb。

若 200 bp相当于一个核小体,则可形成25个核小体,实际观察到23个,与推断基本一致。

如用0.25mol/L盐酸将SV40溶解,可在电镜下直接看到组蛋白的聚合体,若除去组蛋白,则完全伸展的DNA长度恰好为 5.0 kb。 1、每个核小体单位包括 200 bp左右的DNA超螺旋和一个组蛋白八聚体以及一个分子的组蛋白H1。

2、组蛋白八聚体构成核小体的盘状核心颗粒,相对分子质量100 000,由4个异二聚体组成,包括两个H2A-H2B和两个H3-H4。

3、146 bp的DNA分子超螺旋盘旋组蛋白八聚体1.75圈。组蛋白H1在核心颗粒外结合额外 20 bp DNA,锁住核小体DNA的进出端,起稳定核小体的作用。

4、两个相邻核小体之间以连接DNA相连,典型长度 60 bp,不同物种变化值为 0~80 bp不等。

5、组蛋白与DNA之间的相互作用主要是结构性的,基本不依赖于核苷酸的特异序列。

正常情况下不与组蛋白结合的DNA,当与从动、植物中分离钝化的组蛋白共同孵育时,可以体外组装成核小体亚单位。

实验表明,核小体具有自组装的性质。 6、核小体沿DNA的定位受不同因素的影响。

如非组蛋白与DNA特异性位点的结合,可影响邻近核小体的相位;DNA盘绕组蛋白核心的弯曲也是核小体相位的影响因素,因为富含AT的DNA片段优先存在于DNA双螺旋的小沟,面向组蛋白八聚体,而富含GC的DNA片段优先存在于DNA双螺旋的大沟,面向组蛋白八聚体,结果核小体倾向于形成富含AT和富含GC的理想分布,从而通过核小体相位改变影响基因表达。 整个过程如下:

①最开始是H3·H4四聚体的结合,由CAF-1介导与新合成的裸露的DNA结合。

②然后是两个H2A·H2B二聚体由NAP-1和NAP-2介导加入。为了形成一个核心颗粒,新合成的组蛋白被特异地修饰。组蛋白H4的Lys5和Lys12两个位点典型地被乙酰化。

③核小体最后的成熟需要ATP来创建一个规则的间距以及组蛋白的去乙酰化。

ISWI和SWI/SNF家族的蛋白参与此过程的调节。

连接组蛋白(H1)的结合伴随着核小体的折叠。

④6个核小体组成一个螺旋或由其他的组装方式形成一个螺线管结构。

⑤进一步的折叠事件将使染色质在细胞核中最终形成确定的结构。 这样一个高度压缩的结构极大地阻碍了像转录这样的细胞核活动的进行。为了解决这个问题,有两个家族的染色质修饰酶在染色质上作用,使染色质更接近于转录机器。第一个家族是通过在组蛋白尾部的共价修饰而发挥作用,这些修饰包括组蛋白的磷酸化、乙酰化和泛素化等,它们会影响以后与DNA或组蛋白相互作用因子的作用。第二个家族成员的主要特点是它们能够利用ATP水解时释放的能量来破坏核小体中的组蛋白-DNA接触。 在真核生物细胞周期的S期,染色体的完全复制不仅需要基因组DNA的复制,也需要把复制好的DNA组装成染色质。普遍认为,在复制叉的移动期间,染色质短暂地解组装,然后在两条复制好的子代DNA链上重新进行组装。新复制的DNA主要通过以下两种途径组装成染色质:第一,在复制叉的移动期间,父代的核小体核心颗粒与DNA分离,到该段DNA复制完成,父代的核小体核心颗粒直接转移到两条子链DNA的一条上;第二,染色质组装因子利用刚刚合成的、乙酰化的组蛋白介导核小体在复制DNA上组装。 染色质组装的前期过程,即从裸露DNA组装成直径30纳米的螺线管已有直接的实验证据,并被绝大多数科学家认可。然而,染色质如何进一步组装成更高级结构,直至最终成染色体的过程尚不是非常清楚,主要有两种模型。 人的每个体细胞所含DNA约6×109bp分布在46条染色体中,总长达2米,平均每条染色体DNA分子长约5厘米,而细胞核直径只有5~8微米,这就意味着从染色质DNA组装成染色体要压缩近万倍,相当于一个网球内包含有2千米长的细线。 多级螺旋模型 由DNA与组蛋白组装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10纳米的核小体串珠结构,这是染色质组装的一级结构。不过在细胞中,染色质很少以这种伸展的串珠状形式存在。当细胞核经温和处理后,在电镜下往往会看到直径为30纳米的染色质纤维。在有组蛋白H1存在的情况下,由直径10纳米的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径25~30纳米,螺距12纳米的螺线管。组蛋白H1对螺线管的稳定起着重要作用。螺线管是染色质组装的二级结构。 Bak等(1977)从胎儿离体培养的分裂细胞中分离出染色体,经温和处理后,在电镜下看到直径0.4微米,长11~60微米的染色线,成为单位线。在电镜下观察,判明单位线是由螺线管进一步螺旋化形成直径为0.4微米的圆筒状结构,称为超螺线管,这是染色质组装的三级结构。这种超螺线管进一步螺旋折叠,形成长2~10微米的染色单体,即染色质组装的四级结构。经过四级螺旋组装形成的染色体结构,共压缩了8 400倍。 骨架-放射环结构模型 Laemmli等人用2mol/L的NaCl或硫酸葡聚糖加肝素处理HeLa细胞中期染色体,除去组蛋白和大部分非组蛋白后,在电镜下可观察到由非组蛋白构成的染色体骨架和由骨架伸出的无数的DNA侧环。此外,实验观察发现,不论是原核细胞的染色体还是两栖类卵母细胞的灯刷染色体或昆虫的多线染色体,几乎都含有一系列的袢环结构域,从而提示袢环结构可能是染色体高级结构的普遍特征。 该模型认为,30纳米的染色线折叠成环,沿染色体纵轴,由中央向四周伸出,构成放射环,即染色体的骨架-放射环结构模型。首先是直径2纳米的双螺旋DNA与组蛋白八聚体构建成连续重复的核小体串珠结构,其直径10纳米。然后按每圈6个核小体为单位盘绕成直径30纳米的螺线管。由螺线管形成DNA复制环,每18个复制环呈放射状平面排列,结合在核基质上形成微带。微带是染色体高级结构的单位,大约10个微带沿纵轴构建成子染色体。

(1)一级结构:60nm的DNA片断(约200Bp)和五种组蛋白相结合形成核小体,其长度被压缩10倍左右。核小体是染色质基本结构单位,即染色质的一级结构;

(2)二级结构:核小体紧密连接形成串珠链,再由串珠链螺旋缠绕形成外径30nm、内径10nm、螺距11nm的螺线管,每个螺旋含6个核小体,DNA长度又被压缩6倍左右。这种螺线管就是染色质的二级结构;

关于母上攻略游戏建模和染色质组装的结构模型有哪些呢?的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 母上攻略游戏建模的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于染色质组装的结构模型有哪些呢?、母上攻略游戏建模的信息别忘了在本站进行查找喔。


[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:3801085100@qq.com,我们会予以删除相关文章,保证您的权利。
转载请注明出处:http://mbdry.com/yangshengrenqun/nvxys/9595.html

相关热词:

下一篇:
热门TAG关键词